

OCR Computer Science AS Level

1.4.1 Data Types

Concise Notes

🕟 www.pmt.education

0

▶ Image: PMTEducation

Specification:

1.4.1

- Primitive data types
 - \circ Integer
 - Real / floating point
 - Character
 - String
 - Boolean
- Represent positive integers in binary
- Negative numbers in binary
 - Sign magnitude
 - Two's complement
- Addition and subtraction of binary integers
- Represent positive integers in hexadecimal
- Convert positive integers between binary, hexadecimal and denary
- Representation and normalisation of floating point numbers in binary
- How character sets are used to represent text
 - ASCII
 - Unicode

▶ Image: Contraction PMTEducation

Data Types

Integer	-88
A whole number	0
 Zero is an integer 	0
 Negative numbers are integers 	15
Can't have a fractional part	
Useful for counting things	
Real	75 0
 Positive or negative numbers 	-75.3
 Can, but do not necessarily, have a fractional part 	5.66
 Useful for measuring things 	15
All integers are real numbers	
Character	_
 A single symbol used by a computer 	R
The letters A to Z	ほ
• The numbers 0 to 9	104
 Symbols like %, £ and □ 	
String	
A collection of characters	Hello!
 Can be used to store a single character 	
Can also be used to store many characters in	07954
succession	
Useful for storing text	
 Don't cut off leading 0s like numeric types 	
Boolean	True
Restricted to True and False	False
 Useful for recording data that can only take two 	1 0130
values	

Network www.pmt.education

<u>_</u>

Representing Positive Integers in Binary

- A single binary digit is called a bit
- Eight binary digits can be combined to form a byte
- Half a byte (four bits) is called a nybble
- The least significant bit of a binary number is the one furthest to the right
- The most significant bit is furthest to the left

Binary Addition

When adding binary, there are four simple rules to remember:

1.	0	+	0	+	0	=	0
2.	0	+	0	+	1	=	1
3.	0	+	1	+	1	=	10
4.	1	+	1	+	1	=	11

Negative Numbers in Binary

- Binary can represent negative numbers using a few different methods, we cover:
 - Sign magnitude
 - Two's complement
- These methods give a special meaning to certain bits

Sign Magnitude

- The equivalent of adding a + or sign in front of a number
- A leading 1 is added for a negative number
- A leading 0 is added for a positive number

Two's Complement

- Has the added advantage of making binary arithmetic with negative numbers much more simple
- Works by making the most significant bit negative
- Converting to two's complement is as simple as flipping all of the bits in the positive version of a binary number and adding one

DOfS PMTEducation

🕟 www.pmt.education

Subtracting in Binary using Two's Complement

- Two's complement makes subtraction in binary easy
- Subtracting a number from another is the same as adding a negative number
- To subtract in binary, use binary addition with a negative two's complement number

Hexadecimal

- Hexadecimal is base 16
- The characters 0-9 are as usual
- The characters A-F represent 10-15
- Place values start with 1 (16⁰) and go up in powers of 16.

Decimal															
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F

Hexadecimal

Converting from hexadecimal to binary

- First convert each hexadecimal digit to a decimal number
- Convert these to a binary nybble
- Combine the nybbles to form a single binary number

Converting from hexadecimal to decimal

- First convert to binary, as explained above, and then convert from binary to decimal
- Alternatively, use the place values of hexadecimal to convert directly to decimal

Floating Point Numbers in Binary

- Floating point binary is similar to scientific notation
- Floating point numbers can be split into two parts:
 - Mantissa
 - Exponent
- The mantissa is always taken to have the binary point after the most significant bit

- Next convert the exponent to decimal
- Move the binary point according to the exponent

www.pmt.education

Normalisation

- Maximises precision in a given number of bits
- To normalise a binary number:
 - Adjust the mantissa so that it starts 01 for a positive number of 10 for a negative number

Character Sets for Representing Text

- A published collection of codes and corresponding characters
- Can be used by computers for representing text
- Two widely used character sets are ASCII and Unicode

ASCII

- American Standard Code for Information Interchange
- The leading character set before Unicode
- Uses 7 bits to represent $2^7 = 128$ different characters
- ASCII soon came into trouble when computers needed to represent other languages with different characters

Unicode

- Solves the problem of ASCII's limited character set
- Uses a varying number of bits allowing for over 1 million different characters
- Many characters have yet to be allocated
- Enough capacity to represent a wealth of different languages, symbols and emoji

▶ Image: PMTEducation