OCR Computer Science AS Level

1.4.1 Data Types
Concise Notes

Specification:

1.4.1

- Primitive data types
- Integer
- Real / floating point
- Character
- String
- Boolean
- Represent positive integers in binary
- Negative numbers in binary
- Sign magnitude
- Two's complement
- Addition and subtraction of binary integers
- Represent positive integers in hexadecimal
- Convert positive integers between binary, hexadecimal and denary
- Representation and normalisation of floating point numbers in binary
- How character sets are used to represent text
- ASCII
- Unicode

Data Types

Integer

- A whole number
- Zero is an integer
- Negative numbers are integers
- Can't have a fractional part
- Useful for counting things

Real

- Positive or negative numbers
- Can, but do not necessarily, have a fractional part
- Useful for measuring things

15

- All integers are real numbers

Character

- A single symbol used by a computer R
- The letters A to Z
- The numbers 0 to 9
- Symbols like \%, £ and

String

- A collection of characters
- Can be used to store a single character
- Can also be used to store many characters in 07954 succession
- Useful for storing text
- Don't cut off leading 0s like numeric types

Boolean

- Restricted to True and False
- Useful for recording data that can only take two

True
False values

Representing Positive Integers in Binary

- A single binary digit is called a bit
- Eight binary digits can be combined to form a byte
- Half a byte (four bits) is called a nybble
- The least significant bit of a binary number is the one furthest to the right
- The most significant bit is furthest to the left

Binary Addition

When adding binary, there are four simple rules to remember:

1. $\theta+0+0=0$
2. $0+0+1=1$
3. $0+1+1=10$
4. $1+1+1=11$

Negative Numbers in Binary

- Binary can represent negative numbers using a few different methods, we cover:
- Sign magnitude
- Two's complement
- These methods give a special meaning to certain bits

Sign Magnitude

- The equivalent of adding a + or - sign in front of a number
- A leading 1 is added for a negative number
- A leading 0 is added for a positive number

Two's Complement

- Has the added advantage of making binary arithmetic with negative numbers much more simple
- Works by making the most significant bit negative
- Converting to two's complement is as simple as flipping all of the bits in the positive version of a binary number and adding one

Subtracting in Binary using Two's Complement

- Two's complement makes subtraction in binary easy
- Subtracting a number from another is the same as adding a negative number
- To subtract in binary, use binary addition with a negative two's complement number

Hexadecimal

- Hexadecimal is base 16
- The characters 0-9 are as usual
- The characters A-F represent 10-15
- Place values start with $1\left(16^{\circ}\right)$ and go up in powers of 16 .

Decimal

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}
Hexadecimal															

Converting from hexadecimal to binary

- First convert each hexadecimal digit to a decimal number
- Convert these to a binary nybble
- Combine the nybbles to form a single binary number

Converting from hexadecimal to decimal

- First convert to binary, as explained above, and then convert from binary to decimal
- Alternatively, use the place values of hexadecimal to convert directly to decimal

Floating Point Numbers in Binary

- Floating point binary is similar to scientific notation
- Floating point numbers can be split into two parts:
- Mantissa
- Exponent
- The mantissa is always taken to have the binary point after the most significant bit
- Next convert the exponent to decimal
- Move the binary point according to the exponent

Normalisation

- Maximises precision in a given number of bits
- To normalise a binary number:
- Adjust the mantissa so that it starts 01 for a positive number of 10 for a negative number

Character Sets for Representing Text

- A published collection of codes and corresponding characters
- Can be used by computers for representing text
- Two widely used character sets are ASCII and Unicode

ASCII

- American Standard Code for Information Interchange
- The leading character set before Unicode
- Uses 7 bits to represent $2^{7}=128$ different characters
- ASCII soon came into trouble when computers needed to represent other languages with different characters

Unicode

- Solves the problem of ASCII's limited character set
- Uses a varying number of bits allowing for over 1 million different characters
- Many characters have yet to be allocated
- Enough capacity to represent a wealth of different languages, symbols and emoji

